We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which can be decomposed as an almost-orthogonal sum of a sequence going strongly to zero in the corresponding Lebesgue space, and of a superposition of terms obtained from fixed profiles by applying sequences of translations and dilations. This decomposition contains in particular the various versions of the concentration-compactness principle
Using concentration-compactness arguments, we prove a variant of the Brézis–Lieb-Lemma under weaker ...
AbstractWe present a new method for proving existence results in shape optimization problems involvi...
We prove interpolation estimates between Morrey-Campanato spaces and Sobolev spaces. These estimates...
We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which ca...
AbstractLet (un) be a bounded sequence inHs,p(Rd) (0<s<d/p). We show that (un) has a subsequence (u′...
We obtain an improved Sobolev inequality in $H^s$ spaces involving Morrey norms. This refinement yie...
We obtain an improved Sobolev inequality in spaces involving Morrey norms. This refinement yields a ...
We prove an abstract version of concentration compactness principle in Hilbert space and show its ap...
Taken from unpublished lecture notes "Variational Methods in Quantum Mechanics" written for a course...
AbstractLet (un) be a bounded sequence inHs,p(Rd) (0<s<d/p). We show that (un) has a subsequence (u′...
AbstractThis paper is devoted to the description of the lack of compactness of Hrad1(R2) in the Orli...
We extend the Global Compactness result by M. Struwe (Math. Z, 1984) to any fractional Sobolev space...
Abstract. We extend the global compactness result by M. Struwe ([17]) to any fractional Sobolev spac...
To appear in Journal de Mathématiques Pures et AppliquéesThis paper is devoted to the description of...
We extend the global compactness result by Struwe (1984) to any fractional Sobolev spaces H ̇ s(⌦), ...
Using concentration-compactness arguments, we prove a variant of the Brézis–Lieb-Lemma under weaker ...
AbstractWe present a new method for proving existence results in shape optimization problems involvi...
We prove interpolation estimates between Morrey-Campanato spaces and Sobolev spaces. These estimates...
We prove that any bounded sequence in a Hilbert homogeneous Sobolev space has a subsequence which ca...
AbstractLet (un) be a bounded sequence inHs,p(Rd) (0<s<d/p). We show that (un) has a subsequence (u′...
We obtain an improved Sobolev inequality in $H^s$ spaces involving Morrey norms. This refinement yie...
We obtain an improved Sobolev inequality in spaces involving Morrey norms. This refinement yields a ...
We prove an abstract version of concentration compactness principle in Hilbert space and show its ap...
Taken from unpublished lecture notes "Variational Methods in Quantum Mechanics" written for a course...
AbstractLet (un) be a bounded sequence inHs,p(Rd) (0<s<d/p). We show that (un) has a subsequence (u′...
AbstractThis paper is devoted to the description of the lack of compactness of Hrad1(R2) in the Orli...
We extend the Global Compactness result by M. Struwe (Math. Z, 1984) to any fractional Sobolev space...
Abstract. We extend the global compactness result by M. Struwe ([17]) to any fractional Sobolev spac...
To appear in Journal de Mathématiques Pures et AppliquéesThis paper is devoted to the description of...
We extend the global compactness result by Struwe (1984) to any fractional Sobolev spaces H ̇ s(⌦), ...
Using concentration-compactness arguments, we prove a variant of the Brézis–Lieb-Lemma under weaker ...
AbstractWe present a new method for proving existence results in shape optimization problems involvi...
We prove interpolation estimates between Morrey-Campanato spaces and Sobolev spaces. These estimates...