Context. As of today, asteroseismology mainly allows us to probe the internal rotation of stars when modes are only weakly affected by rotation using perturbative methods. Such methods cannot be applied to rapidly rotating stars, which exhibit complex oscillation spectra. In this context, the so-called traditional approximation, which neglects the terms associated with the latitudinal component of the rotation vector, describes modes that are strongly affected by rotation. This approximation is sometimes used for interpreting asteroseismic data, however, its domain of validity is not established yet. Aims. We aim at deriving analytical prescriptions for period spacings of low-frequency gravity modes strongly affected by rotation thr...