In this paper, we study the solution uniqueness of an individual feasible vector of a class of convex optimization problems involving convex piecewise affine functions and subject to general polyhedral constraints. This class of problems incorporates many important polyhedral constrained ℓ1 recovery problems arising from sparse optimization, such as basis pursuit, LASSO, and basis pursuit denoising, as well as polyhedral gauge recovery. By leveraging the max-formulation of convex piecewise affine functions and convex analysis tools, we develop dual variables based necessary and sufficient uniqueness conditions via simple and yet unifying approaches; these conditions are applied to a wide range of ℓ1 minimization problems under possible poly...