We study the thermophoretic coefficient DT of a charged colloid. The non-uniform electrolyte is characterized in terms of densities and diffusion currents of mobile ions. The hydrodynamic treatment in the vicinity of a solute particle relies on the Hückel approximation, which is valid for particles smaller than the Debye length, a ≪ $ \lambda$ . To leading order in the parameter a/$ \lambda$ , we find that the coefficient DT consists of two contributions, a dielectrophoretic term proportional to the permittivity derivative d$ \varepsilon$/dT , and a Seebeck term, i.e., the macroscopic electric field induced by the thermal gradient in the electrolyte solution. Depending on the particle valency, these terms may take opposite signs, and their ...