The optical diffraction patterns of random Sierpinski carpets of different fractal dimensions at different levels of iteration are shown and analyzed. The sensitivity of such an analysis to long range correlations, is demonstrated theoretically by means of the transfer matrix formalism of fractals, T.M.F. The relation between the subdimensions defined in T.M.F. and diffraction patterns is outlined. Finally an analysis of experimental diffraction patterns is proposed in order to measure these new theoretical subdimensions.On présente ici les clichés de diffraction optique de tapis de Sierpinski aléatoires de différentes dimensions fractales, pris à des niveaux d'itération différents. Au moyen du formalisme de la matrice de transfert dans les...