The first class of problem we study deals with geometric matchings. Given a set of points in the plane, we study perfect matchings of those points by straight line segments so that the segments do not cross. Bottleneck matching is such a matching that minimizes the length of the longest segment. We are interested in finding a bottleneck matching of points in convex position. In the monochromatic case, where any two points are allowed to be matched, we give an O(n 2 )-time algorithm for finding a bottleneck matching, improving upon previously best known algorithm of O(n 3 ) time complexity. We also study a bichromatic version of this problem, where each point is colored either red or blue, and only points of different color can be matched. W...