預測技術在決策過程中是不可或缺的重要工具。精確的預測可以提供決策者更多的資訊去做出正確的決策。傳統的點預測方法是目前使用最多的預測方式,其預測模式常需要較嚴格的基本假設,這使得預測模式的建構較為困難。而加權模糊時間數列模式並不需要強烈的基本假設,模式架構較傳統更為簡易,也提供決策者更多的選擇。本研究將傳統的加權模糊時間數列推廣為區間加權模糊時間數列。與常用的幾種區間模糊時間數列做比較,以預測每日台幣對美元的匯率的方式來探討幾種預測方法的效率評估與準確性。Forecasting technology has played an important role for the decision makers. Accurate forecasts can provide decision makers more information to make the right decisions. Currently, the most use of forecasts is the traditional point forecasting, whose forecasting model often requires strict assumptions, and this makes it more difficult to construct the forecasting model. Weighted fuzzy time series model does not require so strong assumptions, so the model construction is simpler than traditional ones. It also provide...
[[abstract]]時間序列區間預測法較傳統預測法能更週嚴地考慮到預測事件之變動性,並能提供更充足的資訊供決策者作衝擊評估、風險管理、規劃調度和投資計劃等之參考,因此在企業經營實務上日益受到重視。...
時間數列的模式識別在近年來逐漸受到注意。因為根據時間數列所產生的走勢型態可以作為判斷事件發生與預測未來的基礎。雙線性模式是由ARMA模式所延伸,所以不易與ARMA做一區別。本文就針對這類的問題,提出解...
近年來,隨著科技的進步與工商業的發展,預測技術的創新與改進愈來愈受到重視,同樣地,對於預測準確度的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要...
近年來,預測技術的創新與改進愈來愈受到重視。對於預測效率評估的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要資訊。目前有關模糊時間數列分析與預測...
本文嘗試以模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊關係、模糊規則庫和模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念與一些重要性質。接著提出模糊規則庫的定義,以及模式建構...
本文將模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊自相似度的定義與度量,模糊自迴歸係數的分析,模糊相似度辨識與自迴歸階次認定、模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念...
點預測為目前使用最多之預測陳述,其效率評估亦多以最小平方和誤差(minimum of sum of square errors)為主。每日或月的經濟或財金指標預測是點預測最常見的例子。但是隨著區間時間...
近几年,随着电子设备、传感器和存储服务的发展,金融、医疗等诸多领域都积累了大量数据并产生了众多应用需求,大数据处理技术正走进各行各业人士的视野。在蓬勃发展的股票市场上,股价时间序列数据的规模也不断增大...
時間序列是用來預測未來趨勢的一種重要技術,然而在實務上建構時間序列模型時,參數很難有效估計。原因可能來自於時間序列本身的模糊性質,而導致參數的不確定性使得預測結果產生極大誤差。如果將參數模糊化引進時間...
投資的獲利多寡並不單單基於預測的準確性,信心度的大小亦攸關獲利的結果。因為信心度愈大,則投資人將會提高投資的金額,而獲得更多的利潤。反之,雖然預測的結果是準確的,但若信心度很小,則投資人將不敢投入...
動態資料往往隨著時間區間取法或測量工具的不同而有差異,此種不確定的特質我們稱為模糊性。但是傳統的時間數列仍是以確定的觀察值來記錄具有模糊性的動態資料。為了更完整的表示一個動態過程,我們考慮模糊時間數列...
股票是許多人採取投資的項目。若能準確預測股價的漲跌,則可以有效地降低投資風險,賺取利潤。然而,有許多因素會影響股票走勢,例如政治因素,匯率變化,天災人禍。因此,股票走勢很難被精確預測。我們嘗試用模糊統...
由於許多經濟指標的定義不明確,或是因為資料蒐集的時間不一,導致代表經濟景氣的數值,實際上即具有相當大的的不確定性。傳統的方法多不考慮這樣的模糊性,而傾向尋找一準確的模式轉折點。本文則以模糊數學的方法,...
在統計學上,我們常使用皮爾森相關係數(Pearson’s Correlation Coefficient)來表達兩變數間線性關係的強度,同時也表達出關係之方向。傳統之相關係數所處理的資料都是明確的實數...
[[abstract]]在投資股票市場時,投資人時常須面臨「選擇投資的標的」、「決定買賣的時機」,這兩個問題,此時若有能有效預測股價、股票指數等資訊的輔助工具,便能以更加客觀、系統化的方式做出決策;本...
[[abstract]]時間序列區間預測法較傳統預測法能更週嚴地考慮到預測事件之變動性,並能提供更充足的資訊供決策者作衝擊評估、風險管理、規劃調度和投資計劃等之參考,因此在企業經營實務上日益受到重視。...
時間數列的模式識別在近年來逐漸受到注意。因為根據時間數列所產生的走勢型態可以作為判斷事件發生與預測未來的基礎。雙線性模式是由ARMA模式所延伸,所以不易與ARMA做一區別。本文就針對這類的問題,提出解...
近年來,隨著科技的進步與工商業的發展,預測技術的創新與改進愈來愈受到重視,同樣地,對於預測準確度的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要...
近年來,預測技術的創新與改進愈來愈受到重視。對於預測效率評估的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要資訊。目前有關模糊時間數列分析與預測...
本文嘗試以模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊關係、模糊規則庫和模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念與一些重要性質。接著提出模糊規則庫的定義,以及模式建構...
本文將模糊理論的觀念,應用到時間數列分析上。研究重點包括模糊自相似度的定義與度量,模糊自迴歸係數的分析,模糊相似度辨識與自迴歸階次認定、模糊時間數列模式建構與預測等。我們首先給定模糊時間數列模式的概念...
點預測為目前使用最多之預測陳述,其效率評估亦多以最小平方和誤差(minimum of sum of square errors)為主。每日或月的經濟或財金指標預測是點預測最常見的例子。但是隨著區間時間...
近几年,随着电子设备、传感器和存储服务的发展,金融、医疗等诸多领域都积累了大量数据并产生了众多应用需求,大数据处理技术正走进各行各业人士的视野。在蓬勃发展的股票市场上,股价时间序列数据的规模也不断增大...
時間序列是用來預測未來趨勢的一種重要技術,然而在實務上建構時間序列模型時,參數很難有效估計。原因可能來自於時間序列本身的模糊性質,而導致參數的不確定性使得預測結果產生極大誤差。如果將參數模糊化引進時間...
投資的獲利多寡並不單單基於預測的準確性,信心度的大小亦攸關獲利的結果。因為信心度愈大,則投資人將會提高投資的金額,而獲得更多的利潤。反之,雖然預測的結果是準確的,但若信心度很小,則投資人將不敢投入...
動態資料往往隨著時間區間取法或測量工具的不同而有差異,此種不確定的特質我們稱為模糊性。但是傳統的時間數列仍是以確定的觀察值來記錄具有模糊性的動態資料。為了更完整的表示一個動態過程,我們考慮模糊時間數列...
股票是許多人採取投資的項目。若能準確預測股價的漲跌,則可以有效地降低投資風險,賺取利潤。然而,有許多因素會影響股票走勢,例如政治因素,匯率變化,天災人禍。因此,股票走勢很難被精確預測。我們嘗試用模糊統...
由於許多經濟指標的定義不明確,或是因為資料蒐集的時間不一,導致代表經濟景氣的數值,實際上即具有相當大的的不確定性。傳統的方法多不考慮這樣的模糊性,而傾向尋找一準確的模式轉折點。本文則以模糊數學的方法,...
在統計學上,我們常使用皮爾森相關係數(Pearson’s Correlation Coefficient)來表達兩變數間線性關係的強度,同時也表達出關係之方向。傳統之相關係數所處理的資料都是明確的實數...
[[abstract]]在投資股票市場時,投資人時常須面臨「選擇投資的標的」、「決定買賣的時機」,這兩個問題,此時若有能有效預測股價、股票指數等資訊的輔助工具,便能以更加客觀、系統化的方式做出決策;本...
[[abstract]]時間序列區間預測法較傳統預測法能更週嚴地考慮到預測事件之變動性,並能提供更充足的資訊供決策者作衝擊評估、風險管理、規劃調度和投資計劃等之參考,因此在企業經營實務上日益受到重視。...
時間數列的模式識別在近年來逐漸受到注意。因為根據時間數列所產生的走勢型態可以作為判斷事件發生與預測未來的基礎。雙線性模式是由ARMA模式所延伸,所以不易與ARMA做一區別。本文就針對這類的問題,提出解...
近年來,隨著科技的進步與工商業的發展,預測技術的創新與改進愈來愈受到重視,同樣地,對於預測準確度的要求也愈來愈高。尤其在經濟建設、人口政策、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要...