The SPC product code is a very popular error correction code with four as its minimum distance. Over the erasure channel, it is supposed to correct up to three erasures. However, this code can correct a higher number of erasures under certain conditions. A codeword of the SPC product code can be represented either by an erasure pattern or by a bipartite graph, where the erasures are represented by an edge. When the erasure contains erasures that cannot be corrected, the corresponding graph contains cycles. In this work we determine the number of strict uncorrectable erasure patterns (bipartite graphs with cycles) for a given size with a fixed number of erasures (edges). Since a bipartite graph can be unequivocally represented by its biadjac...