Finding the multiplicity of cycles in bipartite graphs is a fundamental problem of interest in many fields including the analysis and design of low-density parity-check (LDPC) codes. Recently, Blake and Lin computed the number of shortest cycles (g-cycles, where g is the girth of the graph) in a bi-regular bipartite graph, in terms of the degree sequences and the spectrum (eigenvalues of the adjacency matrix) of the graph (Blake and Lin in IEEE Trans Inf Theory 64(10): 6526–6535, 2018). This result was subsequently extended in Dehghan and Banihashemi (IEEE Trans Inf Theory 65(6):3778–3789, 2019) to cycles of length g+ 2 , … , 2 g- 2 , in bi-regular bipartite graphs, as well as 4-cycles and 6-cycles in irregular and half-regular bipartite gr...