27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu$ be the Jacobi measure on the interval $[-1,1]$ and introduce the discrete Sobolev-type inner product $$\langle f,g\rangle= \int^1_{-1} f(x) g(x) d\mu(x)+ Mf(c) g(c)+ Nf'(c) g'(c),$$ where $c\in (1,\infty)$ and $M$, $N$ are nonnegative constants such that $M+ N>0$. The main purpose of this paper is to study the behaviour of the Fourier series in terms of the polynomials associated to the Sobolev inner product. For an appropriate function $f$, we prove here that the Fourier-Sobolev series converges to $f$ on the interval $(-1,1)$ as well as to $f(c)$ and the derivative of the series converges to $f'(c)$. The term appropriate means here, in ge...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on...
Let μ be the Jacobi measure supported on the interval [-1, 1]. Let us introduce the Sob...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
Let J.l be the Jacobi measure on the interval [-I, I] and introduce the discrete Sobolev-type inner ...
AbstractLet μ be the Jacobi measure supported on the interval [−1, 1] and introduce the discrete Sob...
21 pages, no figures.-- MSC2000 codes: 42C05, 33C47.MR#: MR1971776 (2004a:42035)Zbl#: Zbl 1014.42019...
21 pages, no figures.-- MSC2000 codes: 42C05, 33C47.MR#: MR1971776 (2004a:42035)Zbl#: Zbl 1014.42019...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on...
Let μ be the Jacobi measure supported on the interval [-1, 1]. Let us introduce the Sob...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
27 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1931261 (2003g:42043)Zbl#: Zbl 1016.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
Let J.l be the Jacobi measure on the interval [-I, I] and introduce the discrete Sobolev-type inner ...
AbstractLet μ be the Jacobi measure supported on the interval [−1, 1] and introduce the discrete Sob...
21 pages, no figures.-- MSC2000 codes: 42C05, 33C47.MR#: MR1971776 (2004a:42035)Zbl#: Zbl 1014.42019...
21 pages, no figures.-- MSC2000 codes: 42C05, 33C47.MR#: MR1971776 (2004a:42035)Zbl#: Zbl 1014.42019...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
22 pages, no figures.-- MSC2000 code: 42C05.MR#: MR1920116 (2003e:42007)Zbl#: Zbl 1019.42014Let $\mu...
In this article we consider the Sobolev orthogonal polynomials associated to the Jacobi's measure on...
Let μ be the Jacobi measure supported on the interval [-1, 1]. Let us introduce the Sob...