It is well known that any finitely generated Z-module is a direct sum of a projective (in fact a free) module and a Noetherian module (in fact a module of finite length) (for example see [Fu]). More generally, [Sm1] proved that if R is a right Noetherian ring with maximal Artinian right ideal A, then every finitely generated right R-module is the direct sum of a projective module and a module of finite length if and only if the ideal A = eR for some idempotent e in R and the ring R/A is a left and right hereditary left and right Noetherian semiprime ring (see [Sm1, Theorem 3.3]). It was left open in [Sm1] whether the assumption that R be right Noetherian is necessary. In fact, it is not, as Chatters [Ch] showed, by proving that if R is a ri...