Some mistakes corrected, some parts rewritten and clarified, some examples added.International audienceWe show that the Koszul calculus of a preprojective algebra, whose graph is distinct from A$_1$ and A$_2$, vanishes in any (co)homological degree $p>2$. Moreover, its (higher) cohomological calculus is isomorphic as a bimodule to its (higher) homological calculus, by exchanging degrees $p$ and $2-p$, and we prove a generalised version of the 2-Calabi-Yau property. For the ADE Dynkin graphs, the preprojective algebras are not Koszul and they are not Calabi-Yau in the sense of Ginzburg's definition, but they satisfy our generalised Calabi-Yau property and we say that they are Koszul complex Calabi-Yau (Kc-Calabi-Yau) of dimension $2$. For Kc...