The paper deals with the effects of artificial barriers on the dynamic features of unconfined flows such as debris avalanches in coarse-grained materials. These phenomena are often responsible for damage to structures and risk to human life. Artificial barriers could mitigate those threats by reducing the flow velocity and the runout distance as well as diverting the flow towards lateral zones constrained by the barriers. A quasi-3D SPH hydro-mechanically coupled model was used to simulate the propagation heights and velocities, the evolution of pore water pressures inside the flow and the entrainment of additional material from the ground surface during the propagation stage. The numerical simulations referred to (i) simple topography rese...