We previously showed that proprioceptive sensory input from the hindlimbs to the anterior cerebellar cortex of the cat may not be simply organized with respect to a body map, but it may also be distributed to multiple discrete functional areas extending beyond classical body map boundaries. With passive hindlimb stepping movements, cerebellar activity was shown to relate to whole limb kinematics as does the activity of dorsal spinocerebellar tract (DSCT) neurons. For DSCT activity, whole limb kinematics provides a solid functional framework within which information about limb forces, such as those generated during active stepping, may also be embedded. In this study, we investigated this idea for the spinocerebellar cortex activity by exami...