During the past 15 years a new technique, called the stochastic limit of quantum theory, has been applied to deduce new, unexpected results in a variety of traditional problems of quantum physics, such as quantum electrodynamics, bosonization in higher dimensions, the emergence of the noncrossing diagrams in the Anderson model, and in the large-N-limit in QCD, interacting commutation relations, new photon statistics in strong magnetic fields, etc. These achievements required the development of a new approach to classical and quantum stochastic calculus based on white noise which has suggested a natural nonlinear extension of this calculus. The natural theoretical framework of this new approach is the white-noise calculus initiated by...