We investigate the relation between the stationary probability distribution of chemical reaction systems and the convective field derived from the chemical Fokker–Planck equation (CFPE) by comparing predictions of the convective field to the results of stochastic simulations based on Gillespie's algorithm. The convective field takes into account the drift term of the CFPE and the reaction bias introduced by the diffusion term. For one-dimensional systems, fixed points and bifurcations of the convective field correspond to extrema and phenomenological bifurcations of the stationary probability distribution whenever the CFPE is a good approximation to the stochastic dynamics. This provides an efficient way to calculate the effect of system si...