This article is a merge of preprints 00821069 and 00821070International audienceIn this paper, we build and analyze the stability and consistency of decoupled schemes, involving only explicit steps, for the isentropic Euler equations and for the full Euler equations. These schemes are based on staggered space discretizations, with an upwinding performed with respect to the material velocity only. The pressure gradient is defined as the transpose of the natural velocity divergence, and is thus centered. The velocity convection term is built in such a way that the solutions satisfy a discrete kinetic energy balance, with a remainder term at the left-hand side which is shown to be non-negative under a CFL condition. In the case of the full Eul...