In this thesis, some nonlinear problems coming from conformal geometry and physics, namely the prescription of Q-curvature, T-curvature ones and the generalized 2×2 Toda system are studied. We study also the existence of extremal functions of two Moser-Trudinger type inequalities (which is a common feature of those problems) due to Fontana[40] and Chang-Yang[23]
We consider the problem of varying conformally the metric of a four dimensional manifold in order to...
Given a compact four dimensional manifold, we prove existence of conformal metrics with constant Q-c...
AbstractThe best constants in the Sobolev's inequalities, for the Riemannian compact manifolds, intr...
We study the existence and classification of solutions to a Q-curvature problem in R^n with finite v...
AbstractWorking in a given conformal class, we prove existence of constant Q-curvature metrics on co...
This thesis addresses the study of two semilinear elliptic problems that arise in Riemannian Geomet...
Ingeniero Civil MatemáticoEn esta memoria se estudian dos problemas semilineales elípticos clásicos ...
We prove compactness of solutions to some fourth order equations with exponential nonlinearities on...
O estudiarmos as propiedades xeométricas dunha variedade semi-riemanniana, o punto de partida a miú...
We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular ...
RésuméPar des arguments topologiques, on met en évidence des hypothèses suffisantes pour qu'une fonc...
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departament...
We study the existence of solution to the problem \[ (-\Delta)^{n/2} u = Q e^{nu} in \mathbb{R}...
AbstractWe deal with the Q-curvature problem on a 4-dimensional compact Riemannian manifold (M,g) wi...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
We consider the problem of varying conformally the metric of a four dimensional manifold in order to...
Given a compact four dimensional manifold, we prove existence of conformal metrics with constant Q-c...
AbstractThe best constants in the Sobolev's inequalities, for the Riemannian compact manifolds, intr...
We study the existence and classification of solutions to a Q-curvature problem in R^n with finite v...
AbstractWorking in a given conformal class, we prove existence of constant Q-curvature metrics on co...
This thesis addresses the study of two semilinear elliptic problems that arise in Riemannian Geomet...
Ingeniero Civil MatemáticoEn esta memoria se estudian dos problemas semilineales elípticos clásicos ...
We prove compactness of solutions to some fourth order equations with exponential nonlinearities on...
O estudiarmos as propiedades xeométricas dunha variedade semi-riemanniana, o punto de partida a miú...
We consider sone analytic problems arising in sub-Riemannian geometry. First, we construct singular ...
RésuméPar des arguments topologiques, on met en évidence des hypothèses suffisantes pour qu'une fonc...
Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departament...
We study the existence of solution to the problem \[ (-\Delta)^{n/2} u = Q e^{nu} in \mathbb{R}...
AbstractWe deal with the Q-curvature problem on a 4-dimensional compact Riemannian manifold (M,g) wi...
AbstractIf P′ is a C∞ positive function on a compact riemannian manifold of dimension n ⩾ 3 and metr...
We consider the problem of varying conformally the metric of a four dimensional manifold in order to...
Given a compact four dimensional manifold, we prove existence of conformal metrics with constant Q-c...
AbstractThe best constants in the Sobolev's inequalities, for the Riemannian compact manifolds, intr...