Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent slip length are rationalized by examining S(G1), the height of the ...