The 2011 accident at the Fukushima-Daiichi power station following the earthquake and tsunami in Japan put renewed emphasis on increasing the accident tolerance of nuclear fuels. Although the main concern in this incident was the loss of coolant and the Zr cladding reacting with water to form hydrogen, the fuel element is an integral part of any accident tolerant fuel (ATF) concept. Therefore, to license a new commercial nuclear fuel, the prediction of fuel behavior during operation becomes a necessity. This requires knowledge of its properties as a function of temperature, pressure, initial fuel microstructure and irradiation history, or more precisely the changes in microstructure due to irradiation and/or oxidation. Amongst other nuclear...