The final publication is available at Springer via http://dx.doi.org/10.1007/s00041-012-9252-3"Let ν be a countably additive vector measure defined on the Borel subsets of a compact Hausdorff abelian group G. In this paper we define and study a vector valued Fourier transform and a vector valued convolution for functions which are (weakly) integrable with respect to ν. A form of the Riemann Lebesgue Lemma and a Uniqueness Theorem are established in this context. In order to study the vector valued convolution we discuss the invariance under reflection in G of these spaces of integrable functions. Finally we present a Young’s type inequality in this setting and several relevant examples, namely related with the vector measure associated to d...