Big data is an increasingly attractive concept in many fields both in academia and in industry. The increasing amount of information actually builds an illusion that we are going to have enough data to solve all the data driven problems. Unfortunately it is not true, especially for areas where machine learning methods are heavily employed, since sufficient high-quality training data doesn't necessarily come with the big data, and it is not easy or sometimes impossible to collect sufficient training samples, which most computational algorithms depend on. This thesis mainly focuses on dealing situations with limited training data in visual object recognition, by developing novel machine learning algorithms to overcome the limited training dat...