This thesis decribes the work on extending the finite element method to cover interaction between viscous flow and a moving body. The problem configuration of interest is that of a two-dimensional incompressible flow over a solid body which is elastically supported or alternatively undergoing a specified harmonic oscillation. The problem addressed in this thesis is that of an arbitrarily shaped body undergoing a simple harmonic motion in an otherwise undisturbed fluid. The finite element modelling is based on a velocity-pressure primitive variable representation of the Navier-Stokes equations using curved isoparametric elements with quadratic interpolation for velocities and bilinear for pressure. The problem configuration is represented by...