We regard the Newcomb's Paradox as a reduction of the Prisoner's Dilemma and search for the considerable quantum solution. The all known classical solutions to the Newcomb's problem always imply that human has freewill and is due to the unfair set-up(including strategies)of the Newcomb's Problem. In this reason, we here substitute the asymmetric payoff matrix to the general form of the payoff matrix M and consider both of them use the same quantum strategy. As a result we obtained the fair Nash equilibrium, which is better than the case using classical strategies. This means that whether the supernatural being has the precognition or not depends only on the choice of strategy
We consider a slightly modified version of the rock-scissors-paper (RSP) game from the point of view...
The non-extensibility of quantum theory into a non-trivial, noncontextual deterministic theory is ba...
A quantum version of the matching pennies (MP) game is proposed that is played using an Einstein–Pod...
We show that quantum game theory offers solution to the famous Newcomb's paradox (free will problem)...
Newcomb’s problem is a game between two players, one of who has an ability to predict the future: le...
Newcomb's problem is viewed as a dynamic game with an agent and a superior being as players. De...
We examine the classical contents of quantum games. It is shown that a quantum strategy can be inter...
The well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS...
Decision-making by the two negotiating parties is simulated by a prisoner’s dilemma game. The game i...
The relationship betueen Newcomb’s problem, which involves an apparent paradox of prediction. and Pr...
Quantum game theory investigates the behavior of strategic agents with access to quantum technology,...
In quantum game theory, one of the most intriguing and important questions is, "Is it possible ...
Decision-making by the two negotiating parties is simulated by a prisoner’s dilemma game. The game i...
We investigate what quantum advantages can be obtained in multipartite non-cooperative games by stud...
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symm...
We consider a slightly modified version of the rock-scissors-paper (RSP) game from the point of view...
The non-extensibility of quantum theory into a non-trivial, noncontextual deterministic theory is ba...
A quantum version of the matching pennies (MP) game is proposed that is played using an Einstein–Pod...
We show that quantum game theory offers solution to the famous Newcomb's paradox (free will problem)...
Newcomb’s problem is a game between two players, one of who has an ability to predict the future: le...
Newcomb's problem is viewed as a dynamic game with an agent and a superior being as players. De...
We examine the classical contents of quantum games. It is shown that a quantum strategy can be inter...
The well-known refinement of the Nash Equilibrium (NE) called an Evolutionarily Stable Strategy (ESS...
Decision-making by the two negotiating parties is simulated by a prisoner’s dilemma game. The game i...
The relationship betueen Newcomb’s problem, which involves an apparent paradox of prediction. and Pr...
Quantum game theory investigates the behavior of strategic agents with access to quantum technology,...
In quantum game theory, one of the most intriguing and important questions is, "Is it possible ...
Decision-making by the two negotiating parties is simulated by a prisoner’s dilemma game. The game i...
We investigate what quantum advantages can be obtained in multipartite non-cooperative games by stud...
We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symm...
We consider a slightly modified version of the rock-scissors-paper (RSP) game from the point of view...
The non-extensibility of quantum theory into a non-trivial, noncontextual deterministic theory is ba...
A quantum version of the matching pennies (MP) game is proposed that is played using an Einstein–Pod...