We present a notion of geodesic curvature for smooth horizontal curves in a contact sub-Riemannian manifold, measuring how far a horizontal curve is from being a geodesic. This geodesic curvature consists in two functions that both vanish along a smooth horizontal curve if and only if this curve is a geodesic. The main result of this thesis is the metric interpretation of these geodesic curvature functions. This interpretation consists in seeing the geodesic curvature functions as the first corrective coefficients in the Taylor expansion of the sub-Riemannian distance between two close points on the curve.Dans cette thèse, on présente une notion de courbure géodésique pour les courbes lisses horizontales dans une variété sous-Riemannienne d...