The node search game against a lazy (or, respectively, agile) invisible robber has been introduced as a search-game analogue of the treewidth parameter (and, respectively, pathwidth). In the connected variants of the above two games, we additionally demand that, at each moment of the search, the clean territories are connected. The connected search game against an agile and invisible robber has been extensively examined. The monotone variant (where we also demand that the clean territories are progressively increasing) of this game, corresponds to the graph parameter of connected pathwidth. It is known that the price of connectivty to search for an agile robber is bounded by 2, that is the connected pathwidth of a graph is at most twice (pl...