Generic programming has emerged as an important technique for the development of highly reusable and efficient software libraries. In C++, generic programming is enabled by the flexibility of templates, the C++ type parametrization mechanism. However, the power of templates comes with a price: generic (template) libraries can be more difficult to use and develop than non-template libraries and their misuse results in notoriously confusing error messages. As currently defined in C++98, templates are unconstrained, and type-checking of templates is performed late in the compilation process, i.e., after the use of a template has been combined with its definition. To improve the support for generic programming in C++, we introduce concepts to e...