In (ter Beek et al., 2018), we introduce QFLan, a framework for quantitative modeling and analysis of highly (re)configurable systems, like software product lines. We define a rich domain specific language (DSL) for systems with variability in terms of features, which can be dynamically installed, removed or replaced, capable of modeling probabilistic behavior, possibly subject to quantitative feature constraints. High-level DSL specifications are automatically encoded in a process algebra whose operational behavior interacts with a store of constraints, which allows to separate a system's configuration from its behavior. The resulting probabilistic configurations and behavior converge seamlessly in a semantics based on discrete-time Markov...