This paper presents our approach to the quantitative modeling and analysis of highly (re)configurable systems, such as software product lines. Different combinations of the optional features of such a system give rise to combinatorially many individual system variants. We use a formal modeling language that allows us to model systems with probabilistic behavior, possibly subject to quantitative feature constraints, and able to dynamically install, remove or replace features. More precisely, our models are defined in the probabilistic feature-oriented language QFLAN, a rich domain specific language (DSL) for systems with variability defined in terms of features. QFLAN specifications are automatically encoded in terms of a process algebra who...