An advantageous micromechanical technique to deposit large area graphene nanoplatelet (GNP) thin films on a low-density polyethylene substrate is proposed. This method, based on the application of shear-stress and friction forces to a graphite platelets/ethanol paste on the surface of a polymeric substrate, allows to obtain films of overlapped nanoplatelets mainly made of 13-30 graphene layers. X-ray diffraction (XRD), atomic force and transmission electron microscopy (TEM) measurements support the occurrence of a partial exfoliation of the graphite platelets due to shear-stress and friction forces applied during film formation. Scanning electron microscopy (SEM) observations point out that the surface of the polymer is uniformly coated by ...