We investigate systems with a mixed phase space, where regular and chaotic dynamics coexist. Classically, regions with regular motion, the regular islands, are dynamically not connected to regions with chaotic motion, the chaotic sea. Typically, this is also reflected in the quantum properties, where eigenstates either concentrate on the regular or the chaotic regions. However, it was shown that quantum mechanically, due to the tunneling process, a coupling is induced and flooding of regular islands may occur. This happens when the Heisenberg time, the time needed to resolve the discrete spectrum, is larger than the tunneling time from the regular region to the chaotic sea. In this case the regular eigenstates disappear. We study this effec...