International audienceSuperconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ control of couplings, which cannot be obtained by near-equilibrium Hamiltonians. However, as shown in this paper, out-of-equilibrium systems are easily plagued by complex dynamics, leading to instabilities. The prediction and prevention of these instabilities is crucial, both from a fundamental and application perspective. We propose an inductively shunted transmon as the elementary circuit optimized for strong parametric d...