Parallel Code Method (PCM) is one of iterative methods for solving nonlinear equations. The method uses an initial constant matrix instead of Jacobi matrix at every iteration. First, the notion of local convergence for PCM is defined and a sufficient condition for local convergence is given. Secondly, it is shown that the approximations generated by PCM are represented by an infinite power series under the condition that a root of the nonlinear equation is not multiple. Next, based on this property, the sequence of approximations of PCM is accelerated and a better approximation of a root is estimated. Finally, it is verified by numerical examples that the sequence is accelerated according to the property
Abstract. Agroup ofparallel algorithms,and theirimplementation forsolving a special class ofnonlinea...
In the numerical treatment of population dynamic models a great number of large linear systems must ...
Abstract—We analyze the convergence properties of a parallel Newton scheme for differential systems....
summary:Nonlinear iterative methods are investigated and a generalization of a direct method for lin...
Abstract: The parallel variant of iterative method for hp-schemes obtained in the case of ...
A parallel code based on Cimmino-like preconditioner is developed for the solution of the Newton lin...
. Iterative methods for the solution of linear systems on parallel computer architectures are prese...
AbstractThe purpose of this paper is to introduce a new technique for the parallel solution of linea...
We describe PIM Parallel Iterative Methods a collection of Fortran routines to solve systems of l...
AbstractThis paper considers the convergence problem of parallel asynchronous block-iterative comput...
Abstract. Convergence properties are presented for Newton additive and multiplicative Schwarz iterat...
Local convergence of an inexact-restoration method for nonlinear programming is proved. Numerical ex...
This paper will concentrate on contributions of CWI to the development of parallel Runge-Kutta (RK) ...
AbstractIn this paper, parallel algorithms are proposed for solving both systems of nonlinear algebr...
Summarization: This work deals with the investigation of the performance of parallel iterative algor...
Abstract. Agroup ofparallel algorithms,and theirimplementation forsolving a special class ofnonlinea...
In the numerical treatment of population dynamic models a great number of large linear systems must ...
Abstract—We analyze the convergence properties of a parallel Newton scheme for differential systems....
summary:Nonlinear iterative methods are investigated and a generalization of a direct method for lin...
Abstract: The parallel variant of iterative method for hp-schemes obtained in the case of ...
A parallel code based on Cimmino-like preconditioner is developed for the solution of the Newton lin...
. Iterative methods for the solution of linear systems on parallel computer architectures are prese...
AbstractThe purpose of this paper is to introduce a new technique for the parallel solution of linea...
We describe PIM Parallel Iterative Methods a collection of Fortran routines to solve systems of l...
AbstractThis paper considers the convergence problem of parallel asynchronous block-iterative comput...
Abstract. Convergence properties are presented for Newton additive and multiplicative Schwarz iterat...
Local convergence of an inexact-restoration method for nonlinear programming is proved. Numerical ex...
This paper will concentrate on contributions of CWI to the development of parallel Runge-Kutta (RK) ...
AbstractIn this paper, parallel algorithms are proposed for solving both systems of nonlinear algebr...
Summarization: This work deals with the investigation of the performance of parallel iterative algor...
Abstract. Agroup ofparallel algorithms,and theirimplementation forsolving a special class ofnonlinea...
In the numerical treatment of population dynamic models a great number of large linear systems must ...
Abstract—We analyze the convergence properties of a parallel Newton scheme for differential systems....