Laser microprocessing of NiTi based Shape Memory Alloys (SMAs) is one of the most suitable methods for the manufacturing of products in several industrial applications, such as the biomedical, sensor and actuator fields. The nature of material removal in laser material processing is generally thermal; this means that the thermal effect of the processing can influence the performances of the machining itself in terms of quality of the results and productivity. As a consequence, the modification of the microstructural and functional properties of these functional materials has to be expected; its evaluation is consequently needed for a better comprehension of the real performances of the SMA final device. In this work, 150 μm thick sheet of t...