Parthood is used widely in ontologies across subject domains, specified in a multitude of mereological theories, and even more when combined with topology. To complicate the landscape, decidable languages put restrictions on the language features, so that only fragments of the mereo(topo)logical theories can be represented, even though those full features may be needed to check correctness during modelling. We address these issues by specifying a structured network of theories formulated in multiple logics that are glued together by the various linking constructs of the Distributed Ontology Language, DOL. For the KGEMT mereotopology and its five sub-theories, together with the DL-based OWL species and first- and second-order logic, this net...
International audienceGenerally, mereological relations are modeled using fragments of first-order l...
This work focuses on the axiomatized relationships between different ontologies of varying levels of...
AbstractDescription logics (DLs) are a family of state-of-the-art knowledge representation languages...
Parthood is used widely in ontologies across subject domains, specified in a multitude of mereologic...
Parthood is used widely in ontologies across subject domains. Some modelling guidance can be gleaned...
In this paper the foundational principles and the application of a mereotopological theory, the Regi...
We introduce the category of mereotopology Mtop as an alternative category to that of topology Top, ...
A mereotopological semantics to manage ontologies is presented. The aim is to provide a formal basi...
This paper offers a critical reconstruction of the motivations that led to the development of mereol...
Parthood in mereology is one relation, and typically is included in foundational ontologies. Some o...
OWL is a popular language for ontologies. Yet, the restriction to a decidable description logic ofte...
OWL is a popular language for ontologies. Yet, the restriction to a decidable description logic ofte...
This is a brief overview of formal theories concerned with the study of the notions of (and the rela...
Formal ontology provides axiomatizations of domain independent principles which, among other applica...
For descriptions of cognitive processes, including process models for research data provenance and s...
International audienceGenerally, mereological relations are modeled using fragments of first-order l...
This work focuses on the axiomatized relationships between different ontologies of varying levels of...
AbstractDescription logics (DLs) are a family of state-of-the-art knowledge representation languages...
Parthood is used widely in ontologies across subject domains, specified in a multitude of mereologic...
Parthood is used widely in ontologies across subject domains. Some modelling guidance can be gleaned...
In this paper the foundational principles and the application of a mereotopological theory, the Regi...
We introduce the category of mereotopology Mtop as an alternative category to that of topology Top, ...
A mereotopological semantics to manage ontologies is presented. The aim is to provide a formal basi...
This paper offers a critical reconstruction of the motivations that led to the development of mereol...
Parthood in mereology is one relation, and typically is included in foundational ontologies. Some o...
OWL is a popular language for ontologies. Yet, the restriction to a decidable description logic ofte...
OWL is a popular language for ontologies. Yet, the restriction to a decidable description logic ofte...
This is a brief overview of formal theories concerned with the study of the notions of (and the rela...
Formal ontology provides axiomatizations of domain independent principles which, among other applica...
For descriptions of cognitive processes, including process models for research data provenance and s...
International audienceGenerally, mereological relations are modeled using fragments of first-order l...
This work focuses on the axiomatized relationships between different ontologies of varying levels of...
AbstractDescription logics (DLs) are a family of state-of-the-art knowledge representation languages...