The propagation of a train of mode-2 internal solitary-like waves (ISWs) over a uniformly sloping, solid topographic boundary, has been studied by means of a combined laboratory and numerical investigation. The waves are generated by a lock-release method. Features of their shoaling include (i) formation of an oscillatory tail, (ii) degeneration of the wave form, (iii) wave run up, (iv) boundary layer separation, (v) vortex formation and re-suspension at the bed and (vi) a reflected wave signal. Slope steepness, $s$ , is defined to be the height of the slope divided by the slope base length. In shallow slope cases ( $s\leqslant 0.07$ ), the wave form is destroyed by the shoaling process; the leading mode-2 ISW degenerates into a train of mo...