International audienceThis paper is the second part in a series of two articles, which aims at presenting a data-driven modeling strategy for forecasting wildfire spread scenarios based on the assimilation of the observed fire front location and on the sequential correction of model parameters or model state. This model relies on an estimation of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's semi-empirical formulation, in order to propagate the fire front with an Eulerian front-tracking simulator. In Part I, a data assimilation (DA) system based on an ensemble Kalman filter (EnKF) was implemented to provide a spatially uniform correction of biomass fuel and wind parameters and thereby, pr...