International audienceThe input-to-state stability property of nonlinear dynamical systems with multiple invariant solutions is analyzed under the assumption that the system equations are periodic with respect to certain state variables. It is shown that stability can be concluded via a sign-indefinite function, which explicitly takes the systems' periodicity into account. The presented approach leverages some of the difficulties encountered in the analysis of periodic systems via positive definite Lyapunov functions proposed in Angeli and Efimov (2013, 2015). The new result is established based on the framework of cell structure introduced in Leonov (1974) and illustrated via the global analysis of a nonlinear pendulum with a constant pers...