Motivated by progressive climate-change influence on ice degradation in caves, in this paper we present a novel methodology to investigate the link between air dynamics and ice melting. Specifically, we use surveys available for the Leupa ice cave (LIC), located in the Canin-Kanin group in the southeastern Alps and a general purpose computational fluid dynamics model (CFD). Detailed numerical simulations are evaluated on the basis of well-established approaches that consider domain, grid, boundary-conditions, turbulence closure models, buoyancy effects, porous media properties and verification with measured data. External atmospheric conditions are the main trigger for internal circulation but morphology and thermal characteristics of ice a...