We investigate the transition to a Landau–Levich–Derjaguin film in forced dewetting using a quadtree adaptive solution to the Navier–Stokes equations with surface tension. We use a discretization of the capillary forces near the receding contact line that yields an equilibrium for a specified contact angle θΔ, called the numerical contact angle. Despite the well-known contact line singularity, dynamic simulations can proceed without any explicit additional numerical procedure. We investigate angles from 15∘ to 110∘ and capillary numbers from 0.00085 to 0.2 where the mesh size Δ is varied in the range of 0.0035 to 0.06 of the capillary length lc. To interpret the results, we use Cox's theory which involves a microscopic distance rm and a mic...