Entropy is widely employed in many applied sciences to measure the heterogeneity of observations. Recently, many attempts have been made to build entropy measures for spatial data, in order to capture the influence of space over the variable outcomes. The main limit of these developments is that all indices are computed conditional on a single distance and do not cover the whole spatial configuration of the phenomenon under study. Moreover, most of them do not satisfy the desirable additivity property between local and global spatial measures. This work reviews some recent developments, based on univariate distributions, and compares them to a new approach which considers the properties of entropy measures linked to bivariate distributions....