We illustrate a general strategy to (a) calibrate the parameters embedded in competing mathematical models employed to interpret laboratory scale tracer experiments in porous media, (b) rank these alternative models, and (c) estimate the relative degree of likelihood of each model through a posterior probability weight. As an example of application, we consider the interpretation of the conservative and reactive transport experiments of Gramling et al. [2002]. For the interpretation of the conservative experiment three competitive one-dimensional models, i.e., (i) the advection-dispersion equation, (ii) a double porosity formulation, and (iii) the Continuous Time Random Walk are selected. The reactive transport experiment is analyzed by com...