The stability analysis of the motionless state of a horizontal porous channel with rectangular cross-section and saturated by a fluid is developed. The heating from below is modelled by a uniform flux, while the top wall is assumed to be isothermal. The side boundaries are considered as permeable and perfectly conducting. The linear stability of the basic state is studied for the normal mode perturbations. The principle of exchange of stabilities is proved, so that only stationary normal modes need to be considered in the stability analysis. The eigenvalue problem for the neutral stability condition is solved analytically, and a closed-form dispersion relation is obtained for the neutral stability. The Darcy-Rayleigh number is expressed as ...