It is argued that galaxies like ours sustain their star formation by transferring gas from an extensive corona to the star-forming disc. The transfer is effected by the galactic fountain - cool clouds that are shot up from the plane to kiloparsec heights above the plane. The Kelvin-Helmholtz instability strips gas from these clouds. If the pressure and the metallicity of the corona are high enough, the stripped gas causes a similar mass of coronal gas to condense in the cloud's wake. Hydrodynamical simulations of cloud-corona interaction are presented. These confirm the existence of a critical ablation rate above which the corona is condensed and imply that for the likely parameters of the Galactic corona this rate lies near the actual abla...