BiKaehler geometry is characterized by a Riemannian metric g_{ab} and two covariantly constant generally non commuting complex structures K_+^a_b, K_-^a_b, with respect to which g_{ab} is Hermitian. It is a particular case of the biHermitian geometry of Gates, Hull and Roceck, the most general sigma model target space geometry allowing for (2,2) world sheet supersymmetry. We present a sigma model for biKaehler geometry that is topological in the following sense: i) the action is invariant under a fermionic symmetry delta; ii) delta is nilpotent on shell; iii) the action is delta--exact on shell up to a topological term; iv) the resulting field theory depends only on a subset of the target space geometrical data. The biKaehler sigma model is...