The paper considers a particular family of fuzzy monotone set–valued stochastic processes. In order to investigate suitable α–level sets of such processes, a set–valued stochastic framework is proposed for the well–posedness of birth–and–growth process. A birth–and–growth model is rigorously defined as a suitable combination, involving Minkowski sum and Aumann integral, of two very general set–valued processes representing nucleation and growth respectively. The simplicity of the proposed geometrical approach let us avoid problems arising from an analytical definition of the front growth such as boundary regularities. In this framework, growth is generally anisotropic and, according to a mesoscale point of view, is not local, i.e. for a fix...