We consider a model for the polymerization (fragmentation) process involved in infectious prion self-replication and study both its dynamics and non-zero steady state. We address several issues. Firstly, we extend a previous study of the nucleated polymerization model [M.L. Greer, L. Pujo-Menjouet, G.F. Webb, A mathematical analysis of the dynamics of prion proliferation, J. Theoret. Biol. 242 (2006) 598; H. Engler, J. Pruss, G.F. Webb, Analysis of a model for the dynamics of prions II, J. Math. Anal. Appl. 324 (2006) 98] to take into account size dependent replicative properties of prion aggregates. This is achieved by a choice of coefficients in the model that are not constant. Secondly, we show stability results for this steady state for...