Random approximations for a deterministic optimization problem occur in many situations. Unknown parameters or probability distributions in real-life decision problems are replaced with estimates; more and more solution algorithms use random steps. Moreover, many estimation procedures in statistics are random optimization problems, which can be supplemented with a deterministic limit problem. Confidence sets for solution sets and level sets of a deterministic decision problems can be derived on the base of suitable uniform concentration-of-measure results for sequences of random functions. In the present paper approximations with kernel density estimators are considered and concentration-of-measure results for these estimators are provided...