Several official institutions (NBER, OECD, CEPR, and others) provide business cycle chronologies with lags ranging from three months to several years. In this paper, we propose a Markov-switching dynamic factor model that allows for a more timely estimation of turning points. We apply one-step and two-step estimation approaches to French data and compare their performance. One-step maximum likelihood estimation is confined to relatively small data sets, whereas two-step approach that uses principal components can accommodate much bigger information sets. We find that both methods give qualitatively similar results and agree with the OECD dating of recessions on a sample of monthly data covering the period 1993-2014. The two-step method is m...