Nowadays, users perform various essential activities through their smartphones, including mobile payment and financial transaction. Therefore, users’ sensitive data processed by smartphones will be at risk if underlying mobile OSes are compromised. A technology called Trusted Execution Environment (TEE) has been introduced to protect sensitive data in the event of compromised OS and hypervisor. This dissertation points out the limitations of the current design model of mobile TEE, which has a low adoption rate among application developers and has a large size of Trusted Computing Base (TCB). It proposes a new design model for mobile TEE to increase the TEE adoption rate and to decrease the size of TCB. This dissertation applies a new model ...